Misaligned Discs as Obscurers in Active Galaxies
نویسندگان
چکیده
We review critically the evidence concerning the fraction of Active Galactic Nuclei (AGN) which appear as Type 2 AGN, carefully distinguishing strict Type 2 AGN from both more lightly reddened Type 1 AGN, and from low excitation narrow line AGN, which may represent a different mode of activity. Low excitation AGN occur predominantly at low luminosities; after removing these, true Type 2 AGN represent 58±5% of all AGN, and lightly reddened Type 1 AGN a further ∼ 15%. Radio, IR, and volume-limited samples all agree in showing no change of Type 2 fraction with luminosity. X-ray samples do show a change with luminosity; we discuss possible reasons for this discrepancy. We test a very simple picture which produces this Type 2 fraction with minimal assumptions. In this picture, infall from large scales occurs in random directions, but must eventually align with the inner accretion flow, producing a severely warped disk on parsec scales. If the re-alignment is dominated by tilt, with minimal twist, a wide range of covering factors is predicted in individual objects, but with an expected mean fraction of Type 2 AGN of exactly 50%. This “tilted disc” picture predicts reasonable alignment of observed nuclear structures on average, but with distinct misalignments in individual cases. Initial case studies of the few well resolved objects show that such misalignments are indeed present. Subject headings: galaxies:active – galaxies:nuclei – quasars: general – accretion, accretion disks
منابع مشابه
AGN Zoo and Classications of Active Galaxies
We review the variety of Active Galactic Nuclei (AGN) classes (so-calledAGN zoo") and classification schemes of galaxies by activity types based on their optical emission-line spectrum, as well as other parameters and other than optical wave-length ranges. A historical overview of discoveries of various types of active galaxies is given, including Seyfert galaxies, radio galaxies, QSOs, BL Lace...
متن کاملRapid AGN accretion from counter–rotating discs
Accretion in the nuclei of active galaxies may occur chaotically. This can produce accretion discs which are counter–rotating or strongly misaligned with respect to the spin of the central supermassive black hole (SMBH), or the axis of a close SMBH binary. Accordingly we consider the cancellation of angular momentum in accretion discs with a significant change of plane (tilt) between inner and ...
متن کاملMisaligned angular momentum in hydrodynamic cosmological simulations: warps, outer discs and thick discs
We present a detailed analysis of a disc galaxy forming in a high-resolution fully cosmological simulation to investigate the nature of the outer regions of discs and their relevance for the disc formation process. Specifically, we focus on the phenomenon of misaligned disc components and find that the outer disc warp is a consequence of the misalignment between the inner disc and the surroundi...
متن کاملThe creation and persistence of a misaligned gas disc in a simulated early-type galaxy
Massive early-type galaxies (ETGs) commonly have gas discs which are kinematically misaligned with the stellar component. These discs feel a torque from the stars and the angular momentum vectors are expected to align quickly. We present results on the evolution of a misaligned gas disc in a cosmological simulation of a massive ETG from the feedback in realistic environments project. This galax...
متن کاملWhy are AGN and Host Galaxies Misaligned?
It is well established observationally that the characteristic angular momentum axis on small scales around active galactic nuclei (AGN), traced by radio jets and the putative torus, is not well correlated with the large-scale angular momentum axis of the host galaxy. In this paper, we show that such misalignments arise naturally in high-resolution simulations in which we follow angular momentu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009